Detecting the stochastic gravitational wave background from massive gravity with pulsar timing arrays
نویسندگان
چکیده
We explore the potential of pulsar timing arrays (PTAs) such as NANOGrav, EPTA, and PPTA to detect stochastic gravitational wave background in theories massive gravity. In general relativity, function describing dependence correlation between arrival times signals from two pulsars on angle them is known Hellings-Downs curve. compute analogous overlap reduction for gravity, including additional polarization states correction due mass graviton, compare result with The primary a complete analytical form analog curve, providing starting point future numerical studies aimed at detailed comparison PTA data predictions study both massless limit stationary checks our calculation, discuss how formalism also allows us impact spin-2 dark matter candidates PTAs.
منابع مشابه
Detecting the stochastic gravitational wave background using pulsar timing
The direct detection of gravitational waves is a major goal of current astrophysics. We provide details of a new method for detecting a stochastic background of gravitational waves using pulsar timing data. Our results show that regular timing observations of 40 pulsars each with a timing accuracy of 100 ns will be able to make a direct detection of the predicted stochastic background from coal...
متن کاملThe stochastic gravitational-wave background from massive black hole binary systems: implications for observations with Pulsar Timing Arrays
Massive black hole binary systems, with masses in the range ∼ 10 − 10 M⊙, are among the primary sources of gravitational waves in the frequency window ∼ 10 Hz−0.1Hz. Pulsar Timing Arrays (PTAs) and the Laser Interferometer Space Antenna (LISA) are the observational means by which we will be able to observe gravitational radiation from these systems. We carry out a systematic study of the genera...
متن کاملPulsar timing arrays: the promise of gravitational wave detection.
We describe the history, methods, tools, and challenges of using pulsars to detect gravitational waves. Pulsars act as celestial clocks detecting gravitational perturbations in space-time at wavelengths of light-years. The field is poised to make its first detection of nanohertz gravitational waves in the next 10 years. Controversies remain over how far we can reduce the noise in the pulsars, h...
متن کاملThe gravitational-wave discovery space of pulsar timing arrays
Recent years have seen a burgeoning interest in using pulsar timing arrays (PTAs) as gravitational-wave (GW) detectors. To date, that interest has focused mainly on three particularly promising source types: supermassive black hole binaries, cosmic strings, and the stochastic background from early-Universe phase transitions. In this paper, by contrast, our aim is to investigate the PTA potentia...
متن کاملGravitational waves from resolvable massive black hole binary systems and observations with Pulsar Timing Arrays
Massive black holes are key components of the assembly and evolution of cosmic structures and a number of surveys are currently on-going or planned to probe the demographics of these objects and to gain insight into the relevant physical processes. Pulsar Timing Arrays (PTAs) currently provide the only means to observe gravitational radiation from massive black hole binary systems with masses >...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical review
سال: 2021
ISSN: ['0556-2813', '1538-4497', '1089-490X']
DOI: https://doi.org/10.1103/physrevd.104.084052